Combinatorics of ideals of points: a Cerlienco-Mureddu-like approach for an iterative lex game.

Michela Ceria Teo Mora

Polynomial Computer Algebra St. Petersburg 16-21 April 2018 SOLVING Given a 0-dim. ideal $l \in K[x_1, ..., x_n] =: \mathcal{P}$ computes its roots $\mathcal{R} \subset K^n$ SOLVING Given a 0-dim. ideal $I \in K[x_1, ..., x_n] =: \mathcal{P}$ computes its roots $\mathcal{R} \subset K^n$ Trinks, Gianni-Kalkbrener, Auzinger-Stetter, Trianguar sets, RUR,... SOLVING **Given a 0-dim. ideal** $I \in K[x_1, ..., x_n] =: \mathcal{P}$ computes its roots $\mathcal{R} \subset K^n$ Trinks, Gianni-Kalkbrener, Auzinger-Stetter, Trianguar sets, RUR,... v.s

BONDAGE

Given a finite set of points $\mathcal{R} \subset \mathcal{K}^n$, denoting $l := \{f \in \mathcal{P} : f(P) = 0, P \in \mathcal{R}\}$ compute the combinatorial structure of the algebra \mathcal{P}/l (escalier) SOLVING Given a 0-dim. ideal $l \in K[x_1, ..., x_n] =: \mathcal{P}$ computes its roots $\mathcal{R} \subset K^n$

Trinks, Gianni-Kalkbrener, Auzinger-Stetter, Trianguar sets, RUR,...

v.s

BONDAGE

Given a finite set of points $\mathcal{R} \subset K^n$, denoting

 $I := \{f \in \mathcal{P} : f(\mathcal{P}) = 0, \mathcal{P} \in \mathcal{R}\}$ compute the combinatorial

structure of the algebra \mathcal{P}/l (escalier)

Cerlienco-Mureddu, Möller, Lex Game, Cardinal, Auzinger-Stetter, Lundqvist

Cerlienco-Mureddu (1990)

Given a finite set of distinct points **X**, compute the lexicographical Groebner escalier N(I(X)) of the ideal of the points I(X).

There is a 1 - 1 correspondence between **X** and N(I(**X**)).

The algorithm providing the correspondence is **iterative** on the points and **inductive** on the variables. **Complexity:** n^2S^2 (*n* =number of variables, $S = |\mathbf{X}|$).

AN IMPROVEMENT: THE LEX GAME

Felszeghy-Rath-Ronyai (2006)

By a clever use of tries (point trie - lex trie), they develop an algorithm that computes the lexicographical escalier in a more efficient way.

The algorithm **drops iterativity** for the sake of efficiency. **Complexity:** $nS + S \min(S, nr)$ (r =maximal number of children of a node).

THE POINT TRIE

It is a trie representing the reciprocal relations among the coordinates of points.

same path from level 0 to level i = same 1, ..., i first coordinates

It is constructed iteratively on the points.

Example of point trie

$\mathbf{X} = \{(1,0,0), (0,1,0), (1,1,2), (1,0,3)\}$

{1}
1 |
{1}
{1}
0 |
{1}
0 |
{1}
0 |
{1}
1

EXAMPLE OF POINT TRIE

$\boldsymbol{X} = \{(1,0,0), (0,1,0), (1,1,2), (1,0,3)\}$

Example of point trie

 $\bm{X} = \{(1,0,0), (0,1,0), (1,1,2), (1,0,3)\}$

Example of point trie

 $\mathbf{X} = \{(1,0,0), (0,1,0), (1,1,2), (1,0,3)\}$ $\{1,2,3,4\}$ $\{1,3,4\}$ $\{1,3,4\}$ $\{1,3,4\}$ $\{1,4\}, \{3\}, \{2\}$ $0 \mid 1 \mid 1 \mid$ $\{1,4\}, \{3\}, \{2\}$ $0 \mid 3 \mid 2 \mid 0 \mid$ $\{1\}, \{4\}, \{3\}, \{2\}$

Another point of view: Moeller's Algorithm

Moeller (1993)

Given an ordered finite set of distinct points $\mathbf{X} := \{P_1, ..., P_S\}$, find, for each ideal in Macaulay's chain $I_i := I(\{P_1, ..., P_i\}) \ 1 \le i \le S$, the **escalier** N(I_i) and a **separator family** for the points (with some more steps you also get the Groebner bases).

Another point of view: Moeller's Algorithm

MOELLER (1993)

Given an ordered finite set of distinct points $\mathbf{X} := \{P_1, ..., P_S\}$, find, for each ideal in Macaulay's chain $I_i := I(\{P_1, ..., P_i\}) \ 1 \le i \le S$, the **escalier** N(I_i) and a **separator family** for the points (with some more steps you also get the Groebner bases).

- \rightarrow subsuming FGLM and with the same complexity
- \rightarrow iterative on points

 \rightarrow the result (for Lex) is exactly that of Cerlienco-Mureddu algorithm.

Another point of view: Moeller's Algorithm

MOELLER (1993)

Given an ordered finite set of distinct points $\mathbf{X} := \{P_1, ..., P_S\}$, find, for each ideal in Macaulay's chain $I_i := I(\{P_1, ..., P_i\}) \ 1 \le i \le S$, the **escalier** N(I_i) and a **separator family** for the points (with some more steps you also get the Groebner bases).

- \rightarrow subsuming FGLM and with the same complexity
- \rightarrow iterative on points

 \rightarrow the result (for Lex) is exactly that of Cerlienco-Mureddu algorithm.

My 2 cents...

If we evaluate each polynomial at each point, with the same complexity, we can get more information, such as Groebner representation, separator polynomials and Auzinger-Stetter matrices. Can we construct a new algorithm, that is

iterative as Cerlienco-Mureddu and has the same complexity as the lex game?

BAR CODES (CERIA)

DEFINITION

A Bar Code B is a picture composed by segments, called *bars*, superimposed in horizontal rows, which satisfies

A.
$$\forall i, j, 1 \le i \le n - 1, 1 \le j \le \mu(i), \exists ! \overline{j} \in \{1, ..., \mu(i + 1)\}$$
 s.t. $\mathsf{B}_{\overline{j}}^{(i+1)}$
lies under $\mathsf{B}_{j}^{(i)}$

B. $\forall i_1, i_2 \in \{1, ..., n\}, \sum_{j_1=1}^{\mu(i_1)} l_1(\mathsf{B}_{j_1}^{(i_1)}) = \sum_{j_2=1}^{\mu(i_2)} l_1(\mathsf{B}_{j_2}^{(i_2)})$; we will then say that *all the rows have the same length*.

Associating monomials to bars

For $t = x_1^{\gamma_1} \cdots x_n^{\gamma_n} \in \mathcal{T}$, $\forall i \in \{1, ..., n\}$, $\pi^i(t) := x_i^{\gamma_i} \cdots x_n^{\gamma_n}$; $M = \{t_1, ..., t_m\} \subset \mathcal{T}$, $M^{[i]} := \pi^i(M)$, \underline{M} , $\underline{M}^{[i]}$ increasingly ordered w.r.t. Lex.

$$\mathcal{M} := \begin{pmatrix} \pi^{1}(t_{1}) & \dots & \pi^{1}(t_{m}) \\ \pi^{2}(t_{1}) & \dots & \pi^{2}(t_{m}) \\ \vdots & & \vdots \\ \pi^{n}(t_{1}) & \dots & \pi^{n}(t_{m}) \end{pmatrix}$$

Bar Code: connecting with a bar the repeated terms

BAR CODE AND POINT TRIE

We can see the Bar Code as a **point trie** by taking as points the **exponents' lists** (\rightarrow **Macaulay's trick**) for the given terms.

For $M = \{1, x_1, x_2, x_3\} \subset \mathbf{k}[x_1, x_2, x_3]$, we have $\mathfrak{M} = \{p_1 = (0, 0, 0), p_2 = (0, 0, 1), p_3 = (0, 1, 0), p_4 = (1, 0, 0)\}$, so we have

SEVERAL APPLICATIONS OF BAR CODE

Bar Codes are useful to study properties of monomial/polynomial ideals:

• counting (strongly) stable ideals;

SEVERAL APPLICATIONS OF BAR CODE

Bar Codes are useful to study properties of monomial/polynomial ideals:

- counting (strongly) stable ideals;
- computing **Pommaret bases** via interpolation;
- computing Janet multiplicative variables
- detect completeness;
- find variables' orderings which make a set of terms Janet-complete

SEVERAL APPLICATIONS OF BAR CODE

Bar Codes are useful to study properties of monomial/polynomial ideals:

- counting (strongly) stable ideals;
- computing Pommaret bases via interpolation;
- computing Janet multiplicative variables
- detect completeness;
- find variables' orderings which make a set of terms Janet-complete
- Bar Code, point trie vs. Janet tree

OUR ALGORITHM

BASE STEP

 $|\mathbf{X}| = N = 1$: set N(1) = {1} and construct the point trie $T(P_1) = \mathfrak{T}(\mathbf{X})$ and the Bar Code B(1) displayed below. The output is stored in the matrix *M*.

Our algorithm: $|\mathbf{X}| = N > 1$

- update the point trie: forking level s = σ-value; leftmost label of the rightmost sibling l = σ-antecedent;
- find the *s*-bar of t_l : $B_i^{(s)}$

Information on t_N :

- it lies over $B_1^{(n)}, B_1^{(n-1)}, ..., B_1^{(s+1)}$ so t_N lies over the first n, ..., s + 1 bars, i.e. $a_{s+1}^{(N)} = ... = a_n^{(N)} = 0$, so $x_n, ..., x_{s+1} \nmid t_N$;
- it should lie over $B_{j+1}^{(s)}$: $a_s^{(N)} = a_s^{(l)} + 1$.

Our algorithm: $|\mathbf{X}| = N > 1$

We test whether $B_{j+1}^{(s)}$ lies over $B_1^{(n)}, B_1^{(n-1)}, ..., B_1^{(s+1)}$; two possible cases

- A. **NO**: we construct a new *s*-bar of lenght one over $B_1^{(n)}, B_1^{(n-1)}, ..., B_1^{(s+1)}$, on the right of $B_j^{(s)}$, we label it as $B_{j+1}^{(s)}$ and we construct a 1, ..., *s* – 1 bar of length 1 over $B_{j+1}^{(s)}$: $t_N = x_s^{j+2}$; store the output in the *N*-th row of *M*.
- B. YES: we must continue, repeating the procedure

Our algorithm: $|\mathbf{X}| = N > 1$

• restrict the point trie to the points whose corresponding terms lie over $B_{j+1}^{(s)}$. The set containing these points is denoted by *S* and is obtained reading $B_{j+1}^{(s)}$. More precisely, $S = \psi(B_{j+1}^{(s)})$, where

$$\psi: \mathsf{B} \to \mathcal{T}$$

is the function sending each 1-bar $B_l^{(1)}$ in the term t_l over it and, inductively, for $1 < u \le n$, $\psi(B_h^{(u)}) = \bigcup_{B \text{ over } B_h^{(u)}} \psi(B)$

- read P_N 's path, from level s 1 to level 1, looking for the first forking level w.r.t. *S* (σ -value/ σ -antecedent as before).
- repeat the test

The procedure is repeated until we get to the 1-bars or if in the decision step we get case a.

Example

 $\mathbf{X} = \{(0, 0, 0, 0), (0, 0, 0, 1), (0, 1, 2, 3), (1, 0, 0, 0), (1, 0, 0, 1)\}$ $\{1, 2, 3\}$ 0 $\{1, 2, 3\}$ 3 x₂ 2 *x*4 0 1 $M = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$ $\{1, 2\} \ \{3\}$ XЭ 0 2 X3 {3} {1,2} х4 3 0/ **{1**} {2} {3}

There is no 1-bar on the right of *B*, lying over $B_1^{(4)}, B_1^{(3)}, B_1^{(2)}$:

 $P_5 = (1, 0, 0, 1); s = 4 l = 4:$

The fork with P_2 happens at s = 1 and the σ -antecedent is P_l , for l = 2, so $B = B_4^{(1)}$.

Since B' still does not exist, we create it

 $N = \{1, x_1, x_2, x_4, x_1x_4\}$

SEPARATOR POLYNOMIALS

A family of separators for a finite set $\mathbf{X} = \{P_1, ..., P_N\}$ of distinct points is a set $Q = \{Q_1, ..., Q_N\}$ s.t. $Q_i(P_i) = 1$ and $Q_i(P_j) = 0$, for each $1 \le i, j \le N, i \ne j$.

 $X = \{P_1, ..., P_N\}$, with $P_i := (a_{1,i}, ..., a_{n,i})$, i = 1, ..., N, we denote by $C = (c_{i,j})$ the **witness matrix** i.e. the (symmetric) matrix s.t., for i, j = 1, ..., N, $c_{i,j} = 0$ if i = j and if $i \neq j$, $c_{i,j} = \min\{h : 1 \le h \le n \text{ s.t. } a_{h,i} \ne a_{h,j}\}$. Building blocks:

$$p_{i,j}^{[c_{i,j}]} = rac{x_{c_{i,j}} - a_{c_{i,j},j}}{a_{c_{i,j},i} - a_{c_{i,j},j}}$$

 $|\mathbf{X}| = 1$: $Q_1 = 1$. $Q_1, ..., Q_{N-1}$ associated to $\{P_1, ..., P_{N-1}\}$: P_N ? We see now how to get the new separators $Q'_1, ..., Q'_N$ for **X**.

- Set $Q'_N = 1$.
- $\forall j = 1, ..., n$, we take the node $v_{j,u}$ of N
- for each sibling $v_{j,u'}$ of $v_{j,u}$, we pick an element \overline{i} of its label and set $Q'_N = Q'_N p_{N,\overline{i}}^{[j]}$.
- if $v_{j,u}$ is labelled only by *N*, then, for each sibling $v_{j,u'}$, for each element *i* in its label we set $Q'_i = Q_i \rho_{i,N}^{[j]}$.

Once concluded this procedure, if a separator Q_h , $1 \le h \le N$ has **not** been involved in the above steps, we set $Q'_h = Q_h$, getting a family of separators $\{Q'_1, ..., Q'_N\}$ for $\mathbf{X} = \{P_1, ..., P_N\}$. **Complexity of a single iterative round:** $O(\min(N, nr))$.

Example

$$\mathbf{X} = \{P_1 = (1,0), P_2 = (0,1), P_3 = (0,2)\}$$

$$\{1,2,3\}$$

$$\{1,2,3\}$$

$$\{1,2,3\}$$

$$\{1,2,3\}$$

$$\{1,2,3\}$$

$$\{1,3,3\}$$

$$\{1,3,3\}$$

$$\{1,3,3\}$$

$$\{2,3,3\}$$

$$\{1,3,3\}$$

$$\{1,3,3\}$$

$$\{1,3,3\}$$

$$\{2,3,3\}$$

$$\{1,3,3\}$$

$$\{1,3,3\}$$

$$\{1,3,3\}$$

$$\{1,3,3\}$$

$$\{1,3,3\}$$

$$\{1,3,3\}$$

$$\{1,3,3\}$$

$$\{1,3,3\}$$

$$\{1,3,3\}$$

$$\{1,3,3\}$$

$$\{1,3,3\}$$

$$\{1,3,3\}$$

$$\{1,3,3\}$$

$$\{1,3,3\}$$

$$\{2,3,3\}$$

$$\{3,3\}$$

In the first step, we set $Q''_1 = 1$; then, adding P_2 to the trie we set $Q'_2 = p_{2,1}^{[1]} = -(x-1)$ and we modify also Q''_1 , setting $Q'_1 = Q''_1 p_{1,2}^{[1]} = x$, since, when P_3 is still not in the trie, the node $v_{1,2}$, has $V_{1,2} = \{2\}$. So, w.r.t. $\{P_1, P_2\}$, we have $Q'_1 = x$, $Q'_2 = -(x-1)$. Finally, we add P_3 . This way, $Q_3 = p_{3,1}^{[1]} p_{3,2}^{[2]} = -(x-1)(y-1)$ and since $V_{2,3} = \{3\}, Q_2 = Q'_2 p_{2,3}^{[2]} = (x-1)(y-2)$. Finally, we have $Q_1 = x; Q_2 = (x-1)(y-2); Q_3 = -(x-1)(y-1)$.

COMPARISONS?

$$Q_1 = x; Q_2 = (x-1)(y-2); Q_3 = -(x-1)(y-1).$$

From Lex game

$$Q_1 = \frac{1}{2}x(y-1)(y-2); \ Q_2 = y(x-1)(y-2); \ Q_3 = -\frac{1}{2}(x-1)y(y-1),$$

Lundqvist

$$Q_1 = x^2; Q_2 = (x-1)(y-2); Q_3 = -(x-1)(y-1).$$

Moeller

$$Q_1 = x; \ Q_2 = 2 - 2x - y; \ Q_3 = x + y - 1.$$

AUZINGER-STETTER

 $I \triangleleft \mathbf{k}[x_1, ..., x_n]$ zerodimensional ideal; $A := \mathbf{k}[x_1, ..., x_n]/I$. $\forall f \in A$, $\Phi_f : A \rightarrow A$ multiplication by f in A and, fixed a basis $B = \{[b_1], ..., [b_m]\}$ for $A, A_f = (a_{ij})$ so that

$$[b_i f] = \sum_j a_{ij} [b_j], \forall i.$$

We call **Auzinger-Stetter matrices** associated to *I*, the matrices A_{x_i} , i = 1, ..., n, defined w.r.t. the basis given by the lex escalier of I.

LUNDQVIST

 $\mathbf{X} = \{P_1, ..., P_N\}, I := I(\mathbf{X}) \triangleleft \mathbf{k}[x_1, ..., x_n]; N = \{t_1, ..., t_N\} \subset \mathbf{k}[x_1, ..., x_n]$ s.t. $[N] = \{[t_1], ..., [t_N]\}$ is a basis for $A := \mathbf{k}[x_1, ..., x_n]/I$. Then, for each $f \in \mathbf{k}[x_1, ..., x_n]$ we have

 $\mathbf{Nf}(f, N) = (t_1, ..., t_N)(N(\mathbf{X})^{-1})^t (f(P_1), ..., f(P_N))^t,$

where Nf(f, N) is the normal form of f w.r.t. N.

NOTATION

•
$$A_{x_h} := \left(a_{l_i}^{(h)}\right)_{l_i}, 1 \le h \le n, 1 \le l, i \le N$$
, the Auzinger-Stetter matrices w.r.t. N(I);

•
$$B := N(I)(\mathbf{X}) := (b_{Ij})_{Ij}, 1 \le I, j \le N, b_{Ij} := t_I(P_j);$$

•
$$C := (c_{ji})_{ji}$$
, $1 \le j, i \le N$, the inverse matrix of B , i.e. $C := B^{-1}$

• $D^{(h)} := \left(d_{lj}^{(h)}\right)_{lj}, 1 \le h \le n, 1 \le l, j \le N, d_{lj}^{(h)} := \alpha_h^{(j)} t_l(P_j)$, the evaluation of $x_h t_l$ at the point P_j .

LUNDQVIST

 $\mathbf{X} = \{P_1, ..., P_N\}, I := I(\mathbf{X}) \triangleleft \mathbf{k}[x_1, ..., x_n]; N = \{t_1, ..., t_N\} \subset \mathbf{k}[x_1, ..., x_n]$ s.t. $[N] = \{[t_1], ..., [t_N]\}$ is a basis for $A := \mathbf{k}[x_1, ..., x_n]/I$. Then, for each $f \in \mathbf{k}[x_1, ..., x_n]$ we have

 $\mathbf{Nf}(f, N) = (t_1, ..., t_N)(N(\mathbf{X})^{-1})^t (f(P_1), ..., f(P_N))^t,$

where Nf(f, N) is the normal form of *f* w.r.t. N.

For $1 \le l \le N$, the *l*-th row of A_{x_h} is the normal form of $x_h t_l$:

$$Nf(x_h t_l, N(I)) = \sum_{i=1}^{N} a_{li} t_i = (t_1, ..., t_N)C^t(x_h t_l(P_1), ..., x_h t_l(P_N))^t =$$

$$(t_1,...,t_N)C^t(d_{l_1}^{(h)},...,d_{l_N}^{(h)})^t = \sum_i \left(\sum_{j=1}^N d_{j_j}^{(h)}c_{j_j}\right)t_i.$$

This trivially implies that $A_{x_h} = D^{(h)}C = D^{(h)}B^{-1}$.

Computing B^{-1} .

Gaussian column-reduction of $\binom{B}{I}$. At each step

$$\frac{\binom{B}{I}}{\stackrel{}{}\rightarrow \frac{\binom{E}{F}}{\stackrel{}{}}$$

it holds E = BF So $E = 1 \implies F = B^{-1}$.

For each point *i* we know the last σ -value s(i) and σ -antecedent $P_{l(i)}$ $t_i = x_{s(i)} t_{l(i)}$ We perform the following computations

- $b_{1N} := 1$
- for $i = 2 \cdots N 1$, $b_{iN} := b_{l(i)N} a_{s(i)N}$
- for $j = 1 \cdots N$, $b_{Nj} := b_{l(N)j} a_{s(N)N}$ border B

For each point *i* we know the last σ -value s(i) and σ -antecedent $P_{l(i)}$ $t_i = x_{s(i)} t_{l(i)}$ We perform the following computations

- $b_{1N} := 1$
- for $i = 2 \cdots N 1$, $b_{iN} := b_{l(i)N} a_{s(i)N}$

• for
$$j = 1 \cdots N$$
, $b_{Nj} := b_{l(N)j} a_{s(N)N}$
border B

• for
$$i = 1 \cdots N - 1, 1 \le h \le n, d_{iN}^{(h)} := d_{l(i)N}^{(h)} a_{s(i)N}$$

For each point *i* we know the last σ -value s(i) and σ -antecedent $P_{l(i)}$ $t_i = x_{s(i)} t_{l(i)}$ We perform the following computations

- *b*_{1N} := 1
- for $i = 2 \cdots N 1$, $b_{iN} := b_{l(i)N} a_{s(i)N}$

• for
$$j = 1 \cdots N$$
, $b_{Nj} := b_{l(N)j} a_{s(N)N}$
border B

• for
$$i = 1 \cdots N - 1, 1 \le h \le n, d_{iN}^{(h)} := d_{l(i)N}^{(h)} a_{s(i)N}$$

 for *j* = 1 · · · *N*, 1 ≤ *h* ≤ *n*, *d*^(*h*)_{*Nj*} := *d*^(*h*)_{*l*(*N*)*j*}*a*_{*s*(*N*)*N*} border *D*

• for
$$i = 1 \cdots N - 1$$
, $f_{Ni} := \sum_j b_{Nj} c_{ji}$
border C

• for $i = 1 \cdots N - 1$, $g_{iN} := \sum_j c_{ij} b_{jN}$

•
$$h_{NN} := f_{NN} - \sum_{j} f_{Nj} b_{jN}$$

• $c_{iN} := \frac{g_{iN}}{h_{NN}}, 1 \le i \le N$
• $c_{ij} := c'_{ij} - f_{Nj} c_{iN} 1 \le i \le N, 1 \le j < N$

computing
$$C = B^-$$

- for $i = 1 \cdots N 1$, $g_{iN} := \sum_j c_{ij} b_{jN}$
- $h_{NN} := f_{NN} \sum_j f_{Nj} b_{jN}$

•
$$C_{iN} := \frac{g_{iN}}{h_{NN}}, 1 \le i \le N$$

•
$$c_{ij} := c'_{ij} - f_{Nj}c_{iN} 1 \le i \le N, 1 \le j < N$$

computing $C = B^{-1}$

• for
$$1 \le l < N, 1 \le h \le n, a_{lN}^{(h)} := \sum_{i} d_{li}^{(h)} c_{iN}$$
,

• for
$$1 \le j < N, 1 \le h \le n, a_{Nj}^{(h)} := \sum_{i} d_{Ni}^{(h)} c_{ij},$$

 $A^{(h)} = CD^{(h)}$

Example

For $\mathbf{X} = \{P_1 = (1, 0), P_2 = (0, 1), P_3 = (0, 2)\}$:
$P_1: B = C = 1 \text{ and } D^{(1)} = (1) = A_x, D^{(2)} = (0) = A_y.$
$P_{2}: B'' = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} l'' \\ C'' \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & 0 \\ 1 & 0 \\ 0 & 1 \end{pmatrix} \rightarrow B = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}, C = B^{-1} = \begin{pmatrix} 0 & 1 \\ 1 & -1 \end{pmatrix}$
$D^{(1)} = \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}, A_x = \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix}, D^{(2)} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, A_y = \begin{pmatrix} 1 - 1 \\ 0 & 0 \end{pmatrix}.$
$P_{3}: B'' = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 2 \end{pmatrix}, C'' = \begin{pmatrix} 0 & 1 & 0 \\ 1 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, I'' = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & -1 & 2 \end{pmatrix} \rightarrow$
$C = B^{-1} = \begin{pmatrix} 0 & 1 & 0 \\ 2 - 2 - 1 \\ -1 & 1 & 1 \end{pmatrix}, D^{(1)} = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, A_x = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix},$
$D^{(2)} = \begin{pmatrix} 0 & 1 & 2 \\ 0 & 0 & 0 \\ 0 & 1 & 4 \end{pmatrix}, A_y = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 2 - 2 & 3 \end{pmatrix}.$

Thank you for your attention!