Combinatorics of ideals of points: a Cerlienco-Mureddu-Like approach FOR AN ITERATIVE LEX GAME.

Michela Ceria Teo Mora

Polynomial Computer Algebra St. Petersburg
16-21 April 2018

SOLVING

Given a 0 -dim. ideal $I \in K\left[x_{1}, \ldots, x_{n}\right]=: \mathcal{P}$ computes its roots $\mathcal{R} \subset K^{n}$

SOLVING

Given a 0 -dim. ideal $I \in K\left[x_{1}, \ldots, x_{n}\right]=: \mathcal{P}$ computes its roots $\mathcal{R} \subset K^{n}$
Trinks, Gianni-Kalkbrener, Auzinger-Stetter, Trianguar sets, RUR,...

SOLVING

Given a 0 -dim. ideal $I \in K\left[x_{1}, \ldots, x_{n}\right]=: \mathcal{P}$ computes its roots $\mathcal{R} \subset K^{n}$
Trinks, Gianni-Kalkbrener, Auzinger-Stetter, Trianguar sets, RUR,...
V.S

BONDAGE
Given a finite set of points $\mathcal{R} \subset K^{n}$, denoting
$I:=\{f \in \mathcal{P}: f(P)=0, P \in \mathcal{R}\}$ compute the combinatorial
structure of the algebra $\mathcal{P} / /$ (escalier)

SOLVING

Given a 0 -dim. ideal $I \in K\left[x_{1}, \ldots, x_{n}\right]=: \mathcal{P}$ computes its roots $\mathcal{R} \subset K^{n}$
Trinks, Gianni-Kalkbrener, Auzinger-Stetter, Trianguar sets, RUR,...
v.s

BONDAGE
Given a finite set of points $\mathcal{R} \subset K^{n}$, denoting
$I:=\{f \in \mathcal{P}: f(P)=0, P \in \mathcal{R}\}$ compute the combinatorial
structure of the algebra \mathcal{P} / I (escalier)
Cerlienco-Mureddu, Möller, Lex Game, Cardinal, Auzinger-Stetter, Lundqvist

ONCE UPON A TIME...

Cerlienco-Mureddu (1990)
Given a finite set of distinct points \mathbf{X}, compute the lexicographical Groebner escalier $\mathrm{N}(\mathrm{I}(\mathbf{X}))$ of the ideal of the points $I(\mathbf{X})$.

There is a 1 - 1 correspondence between \mathbf{X} and $\mathrm{N}(\mathrm{I}(\mathbf{X}))$.

The algorithm providing the correspondence is iterative on the points and inductive on the variables.
Complexity: $n^{2} S^{2}$ ($n=$ number of variables, $S=|\mathbf{X}|$).

An improvement: the lex game

Felszeghy-Rath-Ronyai (2006)
By a clever use of tries (point trie - lex trie), they develop an algorithm that computes the lexicographical escalier in a more efficient way.

The algorithm drops iterativity for the sake of efficiency. Complexity: $n S+S \min (S, n r)$ ($r=$ maximal number of children of a node).

The point trie

It is a trie representing the reciprocal relations among the coordinates of points.
same path from level 0 to level $i=$ same $1, \ldots, i$ first coordinates

It is constructed iteratively on the points.

Example of point trie

$$
\mathbf{X}=\{(1,0,0),(0,1,0),(1,1,2),(1,0,3)\}
$$

\{1\}
1
\{1\}
$0 \mid$
\{1\}
$0 \mid$
\{1\}

Example of point trie

$$
\mathbf{X}=\{(1,0,0),(0,1,0),(1,1,2),(1,0,3)\}
$$

| | $\{1,2\}$ |
| :--- | :--- | :--- |
| $\{1\}$ | 0 |
| $0 \mid$ | $\{2\}$ |
| $0 \mid$ | $1 \mid$ |
| $\{1\}$ | $\{2\}$ |
| $0 \mid$ | $0 \mid$ |
| $\{1\}$ | $\{2\}$ |

Example of point trie

$$
\mathbf{X}=\{(1,0,0),(0,1,0),(1,1,2),(1,0,3)\}
$$

$1,2,3$			
$\{1 /$	0		
$\{1,3\}$		$\{2\}$	
$0 \mid$		$1 \mid$	
$\{1\}$	$\{3\}$	$\{2\}$	
$0 \mid$	$2 \mid$	$0 \mid$	
$\{1\}$	$\{3\}$	$\{2\}$	

Example of point trie

$$
\mathbf{X}=\{(1,0,0),(0,1,0),(1,1,2),(1,0,3)\}
$$

Another point of view: Moeller’s algorithm

Moeller (1993)
Given an ordered finite set of distinct points $\mathbf{X}:=\left\{P_{1}, \ldots, P_{S}\right\}$, find, for each ideal in Macaulay's chain $I_{i}:=I\left(\left\{P_{1}, \ldots, P_{i}\right\}\right) 1 \leq i \leq S$, the escalier $N\left(l_{i}\right)$ and a separator family for the points (with some more steps you also get the Groebner bases).

Another point of view: Moeller’s algorithm

Moeller (1993)
Given an ordered finite set of distinct points $\mathbf{X}:=\left\{P_{1}, \ldots, P_{S}\right\}$, find, for each ideal in Macaulay's chain $I_{i}:=I\left(\left\{P_{1}, \ldots, P_{i}\right\}\right) 1 \leq i \leq S$, the escalier $N\left(l_{i}\right)$ and a separator family for the points (with some more steps you also get the Groebner bases).
\rightarrow subsuming FGLM and with the same complexity
\rightarrow iterative on points
\rightarrow the result (for Lex) is exactly that of Cerlienco-Mureddu algorithm.

Another point of view: Moeller’s algorithm

Moeller (1993)

Given an ordered finite set of distinct points $\mathbf{X}:=\left\{P_{1}, \ldots, P_{S}\right\}$, find, for each ideal in Macaulay's chain $I_{i}:=I\left(\left\{P_{1}, \ldots, P_{i}\right\}\right) 1 \leq i \leq S$, the escalier $N\left(l_{i}\right)$ and a separator family for the points (with some more steps you also get the Groebner bases).
\rightarrow subsuming FGLM and with the same complexity
\rightarrow iterative on points
\rightarrow the result (for Lex) is exactly that of Cerlienco-Mureddu algorithm.

My 2 cents...
If we evaluate each polynomial at each point, with the same complexity, we can get more information, such as Groebner representation, separator polynomials and Auzinger-Stetter matrices.

Can we construct a new algorithm, that is
iterative as Cerlienco-Mureddu and has the same complexity as the lex game?

Bar Codes (Ceria)

Definition

A Bar Code B is a picture composed by segments, called bars, superimposed in horizontal rows, which satisfies
A. $\forall i, j, 1 \leq i \leq n-1,1 \leq j \leq \mu(i), \exists!\bar{j} \in\{1, \ldots, \mu(i+1)\}$ s.t. $\mathrm{B}_{\bar{j}}^{(i+1)}$ lies under $\mathrm{B}_{j}^{(i)}$
B. $\forall i_{1}, i_{2} \in\{1, \ldots, n\}, \sum_{j_{1}=1}^{\mu\left(i_{1}\right)} I_{1}\left(\mathrm{~B}_{j_{1}}^{\left(i_{1}\right)}\right)=\sum_{j_{2}=1}^{\mu\left(i_{2}\right)} I_{1}\left(\mathrm{~B}_{j_{2}}^{\left(i_{2}\right)}\right)$; we will then say that all the rows have the same length.

Associating monomials to bars

For $t=x_{1}^{\gamma_{1}} \cdots x_{n}^{\gamma_{n}} \in \mathcal{T}, \forall i \in\{1, \ldots, n\}, \pi^{i}(t):=x_{i}^{\gamma_{i}} \cdots x_{n}^{\gamma_{n}}$;
$M=\left\{t_{1}, \ldots, t_{m}\right\} \subset \mathcal{T}, M^{[i]}:=\pi^{i}(M), \underline{M}, \underline{M}^{[i]}$ increasingly ordered w.r.t. Lex.

$$
\mathcal{M}:=\left(\begin{array}{ccc}
\pi^{1}\left(t_{1}\right) & \ldots & \pi^{1}\left(t_{m}\right) \\
\pi^{2}\left(t_{1}\right) & \ldots & \pi^{2}\left(t_{m}\right) \\
\vdots & & \vdots \\
\pi^{n}\left(t_{1}\right) & \ldots & \pi^{n}\left(t_{m}\right)
\end{array}\right)
$$

Bar Code: connecting with a bar the repeated terms

Bar Code and point trie

We can see the Bar Code as a point trie by taking as points the exponents' lists (\rightarrow Macaulay's trick) for the given terms.
For $M=\left\{1, x_{1}, x_{2}, x_{3}\right\} \subset \mathbf{k}\left[x_{1}, x_{2}, x_{3}\right]$, we have
$\mathfrak{M}=\left\{p_{1}=(0,0,0), p_{2}=(0,0,1), p_{3}=(0,1,0), p_{4}=(1,0,0)\right\}$, so we have

Several applications of Bar Code

Bar Codes are useful to study properties of monomial/polynomial ideals:

- counting (strongly) stable ideals;

Several applications of Bar Code

Bar Codes are useful to study properties of monomial/polynomial ideals:

- counting (strongly) stable ideals;
- computing Pommaret bases via interpolation;
- computing Janet multiplicative variables
- detect completeness;
- find variables' orderings which make a set of terms Janet-complete

Several applications of Bar Code

Bar Codes are useful to study properties of monomial/polynomial ideals:

- counting (strongly) stable ideals;
- computing Pommaret bases via interpolation;
- computing Janet multiplicative variables
- detect completeness;
- find variables' orderings which make a set of terms Janet-complete
- Bar Code, point trie vs. Janet tree

OUR Algorithm

Base step
$|\mathbf{X}|=N=1$: set $N(1)=\{1\}$ and construct the point trie $T\left(P_{1}\right)=\mathfrak{I}(\mathbf{X})$ and the Bar Code $\mathrm{B}(1)$ displayed below. The output is stored in the matrix M.

$$
M=\left[\begin{array}{ccccc}
& \mathbf{x}_{\mathrm{n}} & \mathbf{x}_{\mathrm{n}-\mathbf{1}} & \ldots & \mathbf{x}_{1} \\
& \downarrow & \downarrow & \ldots & \downarrow \\
1 \rightarrow & 0 & 0 & \ldots & 0
\end{array}\right]
$$

OUR algorithm: $|\mathbf{X}|=N>1$

- update the point trie: forking level $s=\sigma$-value; leftmost label of the rightmost sibling $I=\sigma$-antecedent;
- find the s-bar of $t_{l}: \mathrm{B}_{j}^{(s)}$

Information on t_{N} :

- it lies over $\mathrm{B}_{1}^{(n)}, \mathrm{B}_{1}^{(n-1)}, \ldots, \mathrm{B}_{1}^{(s+1)}$ so t_{N} lies over the first $n, \ldots, s+1$ bars, i.e. $a_{s+1}^{(N)}=\ldots=a_{n}^{(N)}=0$, so $x_{n}, \ldots, x_{s+1} \nmid t_{N}$;
- it should lie over $\mathrm{B}_{j+1}^{(s)}: a_{s}^{(N)}=a_{s}^{(I)}+1$.

OUR algorithm: $|\mathbf{X}|=N>1$

We test whether $\mathrm{B}_{j+1}^{(s)}$ lies over $\mathrm{B}_{1}^{(n)}, \mathrm{B}_{1}^{(n-1)}, \ldots, \mathrm{B}_{1}^{(s+1)}$; two possible cases
A. NO: we construct a new s-bar of lenght one over $\mathrm{B}_{1}^{(n)}, \mathrm{B}_{1}^{(n-1)}, \ldots, \mathrm{B}_{1}^{(s+1)}$, on the right of $\mathrm{B}_{j}^{(s)}$, we label it as $\mathrm{B}_{j+1}^{(s)}$ and we construct a $1, \ldots, s-1$ bar of length 1 over $\mathrm{B}_{j+1}^{(s)}$: $t_{N}=x_{s}^{j+2}$; store the output in the N-th row of M.
в. YES: we must continue, repeating the procedure

Our algorithm: $|\mathbf{X}|=N>1$

- restrict the point trie to the points whose corresponding terms lie over $\mathrm{B}_{j+1}^{(s)}$. The set containing these points is denoted by S and is obtained reading $\mathrm{B}_{j+1}^{(s)}$. More precisely, $S=\psi\left(\mathrm{B}_{j+1}^{(s)}\right)$, where

$$
\psi: \mathrm{B} \rightarrow \mathcal{T}
$$

is the function sending each 1-bar $\mathrm{B}_{l}^{(1)}$ in the term t_{l} over it and, inductively, for $1<u \leq n, \psi\left(\mathrm{~B}_{h}^{(u)}\right)=\bigcup_{B \text { over } \mathrm{B}_{h}^{(u)}} \psi(B)$

- read P_{N} 's path, from level $s-1$ to level 1, looking for the first forking level w.r.t. S (σ-value $/ \sigma$-antecedent as before).
- repeat the test

The procedure is repeated until we get to the 1-bars or if in the decision step we get case a.

Example

$\mathbf{X}=\{(0,0,0,0),(0,0,0,1),(0,1,2,3),(1,0,0,0),(1,0,0,1)\}$
$\{1,2,3\}$
$0 \mid$
$\{1,2,3\}$

\{1\}
\{2\} $\{3\}$

For $P_{4}=(1,0,0,0), s=1, I=1 ; B$ the blue bar

There is no 1 -bar on the right of B, lying over $\mathrm{B}_{1}^{(4)}, \mathrm{B}_{1}^{(3)}, \mathrm{B}_{1}^{(2)}$:

$$
\begin{aligned}
& P_{5}=(1,0,0,1) ; s=4 I=4: \\
& \{1,2,3,4,5\} \\
& \{1,2,3\} \\
& \{4,5\} \\
& 0 \mid 1 \\
& \{1,2\} \quad\{3\} \\
& \{4,5\} \\
& 0|2| \\
& \{1,2\} \quad\{3\} \\
& 0 \mid \\
& \text { \{1\} } \\
& \{4,5\} \\
& \text { \{2\} } \quad\{3\} \\
& \text { \{4\} } \\
& \text { \{5\} } \\
& B=B_{1}^{(4)} ; B^{\prime}=B_{2}^{(4)}, S=\left\{P_{2}\right\} .
\end{aligned}
$$

The fork with P_{2} happens at $s=1$ and the σ-antecedent is P_{l}, for $I=2$, so $B=B_{4}^{(1)}$.

Since B^{\prime} still does not exist, we create it

$N=\left\{1, x_{1}, x_{2}, x_{4}, x_{1} x_{4}\right\}$

Separator polynomials

A family of separators for a finite set $\mathbf{X}=\left\{P_{1}, \ldots, P_{N}\right\}$ of distinct points is a set $Q=\left\{Q_{1}, \ldots ., Q_{N}\right\}$ s.t.
$Q_{i}\left(P_{i}\right)=1$ and $Q_{i}\left(P_{j}\right)=0$, for each $1 \leq i, j \leq N, i \neq j$.
$\mathbf{X}=\left\{P_{1}, \ldots, P_{N}\right\}$, with $P_{i}:=\left(a_{1, i}, \ldots, a_{n, i}\right), i=1, \ldots, N$, we denote by
$C=\left(c_{i, j}\right)$ the witness matrix i.e. the (symmetric) matrix s.t., for
$i, j=1, \ldots, N, c_{i, j}=0$ if $i=j$ and if $i \neq j$,
$c_{i, j}=\min \left\{h: 1 \leq h \leq n\right.$ s.t. $\left.a_{h, i} \neq a_{h, j}\right\}$.
Building blocks:

$$
p_{i, j}^{\left[c_{i, j}\right]}=\frac{x_{c_{i, j}}-a_{c_{i, j}, j}}{a_{c_{i, j}, i}-a_{c_{i, j}, j}}
$$

$|\mathbf{X}|=1: Q_{1}=1 . Q_{1}, \ldots, Q_{N-1}$ associated to $\left\{P_{1}, \ldots, P_{N-1}\right\}: P_{N}$?
We see now how to get the new separators $Q_{1}^{\prime}, \ldots, Q_{N}^{\prime}$ for \mathbf{X}.

- Set $Q_{N}^{\prime}=1$.
- $\forall j=1, \ldots, n$, we take the node $v_{j, u}$ of N
- for each sibling $v_{j, u^{\prime}}$ of $v_{j, u}$, we pick an element \bar{i} of its label and set $Q_{N}^{\prime}=Q_{N}^{\prime} p_{N, i}^{[j]}$
- if $v_{j, u}$ is labelled only by N, then, for each sibling $v_{j, u^{\prime}}$, for each element i in its label we set $Q_{i}^{\prime}=Q_{i} p_{i, N}^{[j]}$.

Once concluded this procedure, if a separator $Q_{h}, 1 \leq h \leq N$ has not been involved in the above steps, we set $Q_{h}^{\prime}=Q_{h}$, getting a family of separators $\left\{Q_{1}^{\prime}, \ldots, Q_{N}^{\prime}\right\}$ for $\mathbf{X}=\left\{P_{1}, \ldots, P_{N}\right\}$.
Complexity of a single iterative round: $O(\min (N, n r))$.

Example

$\mathbf{X}=\left\{P_{1}=(1,0), P_{2}=(0,1), P_{3}=(0,2)\right\}$

In the first step, we set $Q_{1}^{\prime \prime}=1$; then, adding P_{2} to the trie we set $Q_{2}^{\prime}=p_{2,1}^{[1]}=-(x-1)$ and we modify also $Q_{1}^{\prime \prime}$, setting
$Q_{1}^{\prime}=Q_{1}^{\prime \prime} p_{1,2}^{[1]}=x$, since, when P_{3} is still not in the trie, the node $v_{1,2}$, has $V_{1,2}=\{2\}$. So, w.r.t. $\left\{P_{1}, P_{2}\right\}$, we have $Q_{1}^{\prime}=x$, $Q_{2}^{\prime}=-(x-1)$. Finally, we add P_{3}. This
way, $Q_{3}=p_{3,1}^{[1]} p_{3,2}^{[2]}=-(x-1)(y-1)$ and since
$V_{2,3}=\{3\}, Q_{2}=Q_{2}^{\prime} p_{2,3}^{[2]}=(x-1)(y-2)$. Finally, we have

$$
Q_{1}=x ; Q_{2}=(x-1)(y-2) ; Q_{3}=-(x-1)(y-1)
$$

Comparisons?

$$
Q_{1}=x ; Q_{2}=(x-1)(y-2) ; Q_{3}=-(x-1)(y-1) .
$$

From Lex game

$$
Q_{1}=\frac{1}{2} x(y-1)(y-2) ; Q_{2}=y(x-1)(y-2) ; Q_{3}=-\frac{1}{2}(x-1) y(y-1)
$$

Lundqvist

$$
Q_{1}=x^{2} ; Q_{2}=(x-1)(y-2) ; Q_{3}=-(x-1)(y-1) .
$$

Moeller

$$
Q_{1}=x ; Q_{2}=2-2 x-y ; Q_{3}=x+y-1
$$

Auzinger-Stetter

$I \triangleleft \mathbf{k}\left[x_{1}, \ldots, x_{n}\right]$ zerodimensional ideal; $A:=\mathbf{k}\left[x_{1}, \ldots, x_{n}\right] / I . \forall f \in A$, $\Phi_{f}: A \rightarrow A$ multiplication by f in A and, fixed a basis $B=\left\{\left[b_{1}\right], \ldots,\left[b_{m}\right]\right\}$ for $A, A_{f}=\left(a_{i j}\right)$ so that

$$
\left[b_{i} f\right]=\sum_{j} a_{i j}\left[b_{j}\right], \forall i
$$

We call Auzinger-Stetter matrices associated to I, the matrices $A_{x_{i}}, i=1, \ldots, n$, defined w.r.t. the basis given by the lex escalier of I.
LundQvist
$\mathbf{X}=\left\{P_{1}, \ldots, P_{N}\right\}, I:=I(\mathbf{X}) \triangleleft \mathbf{k}\left[x_{1}, \ldots, x_{n}\right] ; N=\left\{\mathrm{t}_{1}, \ldots, \mathrm{t}_{\mathrm{N}}\right\} \subset \mathbf{k}\left[\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right]$ s.t. $[\mathrm{N}]=\left\{\left[\mathrm{t}_{1}\right], \ldots,\left[\mathrm{t}_{\mathrm{N}}\right]\right\}$ is a basis for $A:=\mathbf{k}\left[x_{1}, \ldots, x_{n}\right] / I$. Then, for each $f \in \mathbf{k}\left[x_{1}, \ldots, x_{n}\right]$ we have

$$
\mathbf{N f}(f, N)=\left(t_{1}, \ldots, t_{N}\right)\left(N(\mathbf{X})^{-1}\right)^{t}\left(f\left(P_{1}\right), \ldots, f\left(P_{N}\right)\right)^{t}
$$

where $\mathrm{Nf}(f, \mathrm{~N})$ is the normal form of f w.r.t. N .

Notation

- $A_{x_{h}}:=\left(a_{l i}^{(h)}\right)_{l i}, 1 \leq h \leq n, 1 \leq I, i \leq N$, the Auzinger-Stetter matrices w.r.t. $\mathrm{N}(\mathrm{I})$;
- $B:=\mathrm{N}(\mathrm{I})(\mathbf{X}):=\left(\mathrm{b}_{\mathrm{lj}}\right)_{\mathrm{lj}}, 1 \leq l, j \leq N, b_{l j}:=t_{l}\left(P_{j}\right)$;
- $C:=\left(c_{j i}\right)_{j i}, 1 \leq j, i \leq N$, the inverse matrix of B, i.e. $C:=B^{-1}$
- $D^{(h)}:=\left(d_{l j}^{(h)}\right)_{l j}, 1 \leq h \leq n, 1 \leq l, j \leq N, d_{l j}^{(h)}:=\alpha_{h}^{(j)} t_{l}\left(P_{j}\right)$, the evaluation of $x_{h} t_{l}$ at the point P_{j}.

Lundqvist

$\mathbf{X}=\left\{P_{1}, \ldots, P_{N}\right\}, I:=I(\mathbf{X}) \triangleleft \mathbf{k}\left[x_{1}, \ldots, x_{n}\right] ; \mathrm{N}=\left\{\mathrm{t}_{1}, \ldots, \mathrm{t}_{\mathrm{N}}\right\} \subset \mathbf{k}\left[\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right]$ s.t. $[\mathrm{N}]=\left\{\left[\mathrm{t}_{1}\right], \ldots,\left[\mathrm{t}_{\mathrm{N}}\right]\right\}$ is a basis for $A:=\mathbf{k}\left[x_{1}, \ldots, x_{n}\right] /$. Then, for each $f \in \mathbf{k}\left[x_{1}, \ldots, x_{n}\right]$ we have

$$
\mathbf{N f}(f, N)=\left(t_{1}, \ldots, t_{N}\right)\left(N(X)^{-1}\right)^{t}\left(f\left(P_{1}\right), \ldots, f\left(P_{N}\right)\right)^{t}
$$

where $\mathrm{Nf}(f, \mathrm{~N})$ is the normal form of f w.r.t. N .

For $1 \leq I \leq N$, the l-th row of $A_{x_{h}}$ is the normal form of $x_{h} t_{l}$:

$$
\begin{gathered}
\operatorname{Nf}\left(x_{h} t_{1}, \mathrm{~N}(\mathrm{I})\right)=\sum_{\mathrm{i}=1}^{\mathrm{N}} \mathrm{a}_{\mathrm{il}} \mathrm{t}_{\mathrm{i}}=\left(\mathrm{t}_{1}, \ldots, \mathrm{t}_{\mathrm{N}}\right) \mathrm{C}^{\mathrm{t}}\left(\mathrm{x}_{\mathrm{h}} \mathrm{t}_{1}\left(\mathrm{P}_{1}\right), \ldots, \mathrm{x}_{\mathrm{h}} \mathrm{t}_{1}\left(\mathrm{P}_{\mathrm{N}}\right)\right)^{\mathrm{t}}= \\
\left(t_{1}, \ldots, t_{N}\right) C^{t}\left(d_{l 1}^{(h)}, \ldots, d_{I N}^{(h)}\right)^{t}=\sum_{i}\left(\sum_{j=1}^{N} d_{l j}^{(h)} c_{j j}\right) t_{i} .
\end{gathered}
$$

This trivially implies that $A_{x_{h}}=D^{(h)} C=D^{(h)} B^{-1}$.

Computing B^{-1}.

Gaussian column-reduction of $\binom{B}{1}$.
At each step

$$
\binom{B}{I} \rightarrow\binom{E}{F}
$$

it holds $E=B F$ So $E=1 \Longrightarrow F=B^{-1}$.

$$
\begin{aligned}
& \text { We border } B \text { obtaining } B^{\prime}:=\left(\begin{array}{cccc}
& & & b_{1 N} \\
& B & & \vdots \\
& & & b_{N-1 N} \\
b_{N 1} & \cdots & b_{N N-1} & b_{N N}
\end{array}\right) \text { and } \\
& \text { properly border }\binom{I}{C} \text { as }\left(\begin{array}{cccc}
& & & b_{1 N} \\
& & & \vdots \\
& & & b_{N-1 N} \\
f_{N 1} & \cdots & f_{N N-1} & b_{N N}
\end{array}\right) \text { where } \\
& \left(f_{N 1} \cdots f_{N N-1}\right)=\left(b_{N 1} \cdots b_{N N-1}\right) C
\end{aligned}
$$

For each point i we know the last σ-value $s(i)$ and σ-antecedent $P_{l(i)} t_{i}=x_{s(i)} t_{l(i)}$
We perform the following computations

- $b_{1 N}:=1$
- for $i=2 \cdots N-1, b_{i N}:=b_{l(i) N} a_{s(i) N}$
- for $j=1 \cdots N, b_{N j}:=b_{I(N) j} a_{s(N) N}$ border B

For each point i we know the last σ-value $s(i)$ and σ-antecedent $P_{l(i)} t_{i}=x_{s(i)} t_{l(i)}$
We perform the following computations

- $b_{1 N}:=1$
- for $i=2 \cdots N-1, b_{i N}:=b_{l(i) N} a_{s(i) N}$
- for $j=1 \cdots N, b_{N j}:=b_{I(N) j} a_{s(N) N}$ border B
- for $i=1 \cdots N-1,1 \leq h \leq n, d_{i N}^{(h)}:=d_{l(i) N}^{(h)} a_{s(i) N}$
- for $j=1 \cdots N, 1 \leq h \leq n, d_{N j}^{(h)}:=d_{l(N) j}^{(h)} a_{s(N) N}$ border D

For each point i we know the last σ-value $s(i)$ and σ-antecedent $P_{l(i)} t_{i}=x_{s(i)} t_{l(i)}$
We perform the following computations

- $b_{1 N}:=1$
- for $i=2 \cdots N-1, b_{i N}:=b_{l(i) N} a_{s(i) N}$
- for $j=1 \cdots N, b_{N j}:=b_{I(N) j} a_{s(N) N}$ border B
- for $i=1 \cdots N-1,1 \leq h \leq n, d_{i N}^{(h)}:=d_{l(i) N}^{(h)} a_{s(i) N}$
- for $j=1 \cdots N, 1 \leq h \leq n, d_{N j}^{(h)}:=d_{I(N) j}^{(h)} a_{s(N) N}$ border D
- for $i=1 \cdots N-1, f_{N i}:=\sum_{j} b_{N j} c_{j i}$ border C
- for $i=1 \cdots N-1, g_{i N}:=\sum_{j} c_{i j} b_{j N}$
- $h_{N N}:=f_{N N}-\sum_{j} f_{N j} b_{j N}$
- $c_{i N}:=\frac{g_{i N}}{h_{N N}}, 1 \leq i \leq N$
- $c_{i j}:=c_{i j}^{\prime}-f_{N j} c_{i N} 1 \leq i \leq N, 1 \leq j<N$ computing $C=B^{-1}$
- for $i=1 \cdots N-1, g_{i N}:=\sum_{j} c_{i j} b_{j N}$
- $h_{N N}:=f_{N N}-\sum_{j} f_{N j} b_{j N}$
- $c_{i N}:=\frac{g_{i N}}{h_{N N}}, 1 \leq i \leq N$
- $c_{i j}:=c_{i j}^{\prime}-f_{N j} c_{i N} 1 \leq i \leq N, 1 \leq j<N$

computing $C=B^{-1}$

- for $1 \leq I<N, 1 \leq h \leq n, a_{I N}^{(h)}:=\sum_{i} d_{l i}^{(h)} c_{i N}$,
- for $1 \leq j<N, 1 \leq h \leq n, a_{N j}^{(h)}:=\sum_{i} d_{N i}^{(h)} c_{i j}$,

$$
A^{(h)}=C D^{(h)}
$$

Example

For $\mathbf{X}=\left\{P_{1}=(1,0), P_{2}=(0,1), P_{3}=(0,2)\right\}$:

$$
P_{1}: B=C=1 \text { and } D^{(1)}=(1)=A_{x}, D^{(2)}=(0)=A_{y} .
$$

$$
P_{2}: B^{\prime \prime}=\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right),\binom{I^{\prime \prime}}{C^{\prime \prime}}=\left(\begin{array}{ll}
1 & 1 \\
1 & 0 \\
1 & 0 \\
0 & 1
\end{array}\right) \rightarrow B=\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right), C=B^{-1}=\left(\begin{array}{cc}
0 & 1 \\
1 & -1
\end{array}\right)
$$

$$
D^{(1)}=\left(\begin{array}{ll}
1 & 0 \\
1 & 0
\end{array}\right), A_{x}=\left(\begin{array}{ll}
0 & 1 \\
0 & 1
\end{array}\right), D^{(2)}=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right), A_{y}=\left(\begin{array}{cc}
1 & -1 \\
0 & 0
\end{array}\right)
$$

$$
P_{3}: B^{\prime \prime}=\left(\begin{array}{lll}
1 & 1 & 1 \\
1 & 0 & 0 \\
0 & 1 & 2
\end{array}\right), C^{\prime \prime}=\left(\begin{array}{ccc}
0 & 1 & 0 \\
1 & -1 & 0 \\
0 & 0 & 1
\end{array}\right), I^{\prime \prime}=\left(\begin{array}{ccc}
1 & 0 & 1 \\
0 & 1 & 0 \\
1 & -1 & 2
\end{array}\right) \rightarrow
$$

$$
C=B^{-1}=\left(\begin{array}{ccc}
0 & 1 & 0 \\
2-2 & 2 & -1 \\
-1 & 1 & 1
\end{array}\right) \cdot D^{(1)}=\left(\begin{array}{lll}
1 & 0 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right), A_{x}=\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right),
$$

$$
D^{(2)}=\left(\begin{array}{lll}
0 & 1 & 2 \\
0 & 0 & 0 \\
0 & 1 & 4
\end{array}\right), A_{y}=\left(\begin{array}{ccc}
0 & 0 & 1 \\
0 & 0 & 0 \\
2 & -2 & 3
\end{array}\right)
$$

Thank you for your attention!

