
Combinatorics of ideals of points:
a Cerlienco-Mureddu-like approach

for an iterative lex game.

Michela Ceria Teo Mora

Polynomial Computer Algebra
St. Petersburg

16-21 April 2018



SOLVING
Given a 0-dim. ideal I ∈ K [x1, . . . , xn] =: P computes its roots
R ⊂ Kn

Trinks, Gianni-Kalkbrener, Auzinger-Stetter, Trianguar sets, RUR,...

v.s

BONDAGE
Given a finite set of points R ⊂ Kn, denoting
I := {f ∈ P : f(P) = 0,P ∈ R} compute the combinatorial
structure of the algebra P/I (escalier)
Cerlienco-Mureddu, Möller, Lex Game, Cardinal, Auzinger-Stetter,
Lundqvist



SOLVING
Given a 0-dim. ideal I ∈ K [x1, . . . , xn] =: P computes its roots
R ⊂ Kn

Trinks, Gianni-Kalkbrener, Auzinger-Stetter, Trianguar sets, RUR,...

v.s

BONDAGE
Given a finite set of points R ⊂ Kn, denoting
I := {f ∈ P : f(P) = 0,P ∈ R} compute the combinatorial
structure of the algebra P/I (escalier)
Cerlienco-Mureddu, Möller, Lex Game, Cardinal, Auzinger-Stetter,
Lundqvist



SOLVING
Given a 0-dim. ideal I ∈ K [x1, . . . , xn] =: P computes its roots
R ⊂ Kn

Trinks, Gianni-Kalkbrener, Auzinger-Stetter, Trianguar sets, RUR,...

v.s

BONDAGE
Given a finite set of points R ⊂ Kn, denoting
I := {f ∈ P : f(P) = 0,P ∈ R} compute the combinatorial
structure of the algebra P/I (escalier)

Cerlienco-Mureddu, Möller, Lex Game, Cardinal, Auzinger-Stetter,
Lundqvist



SOLVING
Given a 0-dim. ideal I ∈ K [x1, . . . , xn] =: P computes its roots
R ⊂ Kn

Trinks, Gianni-Kalkbrener, Auzinger-Stetter, Trianguar sets, RUR,...

v.s

BONDAGE
Given a finite set of points R ⊂ Kn, denoting
I := {f ∈ P : f(P) = 0,P ∈ R} compute the combinatorial
structure of the algebra P/I (escalier)
Cerlienco-Mureddu, Möller, Lex Game, Cardinal, Auzinger-Stetter,
Lundqvist



Once upon a time...

Cerlienco-Mureddu (1990)
Given a finite set of distinct points X, compute the lexicographical
Groebner escalier N(I(X)) of the ideal of the points I(X).

There is a 1 − 1 correspondence between X and N(I(X)).

The algorithm providing the correspondence is iterative on the
points and inductive on the variables.
Complexity: n2S2 (n =number of variables, S = |X|).



An improvement: the lex game

Felszeghy-Rath-Ronyai (2006)
By a clever use of tries (point trie - lex trie), they develop an
algorithm that computes the lexicographical escalier in a more
efficient way.

The algorithm drops iterativity for the sake of efficiency.
Complexity: nS + S min(S, nr)
(r = maximal number of children of a node).



The point trie

It is a trie representing the reciprocal relations among the
coordinates of points.

same path from level 0 to level i = same 1, ..., i first coordinates

It is constructed iteratively on the points.



Example of point trie

X = {(1, 0, 0), (0, 1, 0), (1, 1, 2), (1, 0, 3)}

{1}

{1}

{1}

{1}

1

0

0



Example of point trie

X = {(1, 0, 0), (0, 1, 0), (1, 1, 2), (1, 0, 3)}

{1, 2}

{1}

{1}

{1}

{2}

{2}

{2}

1

0

0

0

1

0



Example of point trie

X = {(1, 0, 0), (0, 1, 0), (1, 1, 2), (1, 0, 3)}

{1, 2, 3}

{1, 3}

{1}

{1}

{2}

{2}

{2}

{3}

{3}

1

0

0

0

1

0

1

2



Example of point trie

X = {(1, 0, 0), (0, 1, 0), (1, 1, 2), (1, 0, 3)}

{1, 2, 3, 4}

{1, 3, 4}

{1, 4}

{1}

{2}

{2}

{2}

{3}

{3}{4}

1

0

0

0

1

0

1

23



Another point of view: Moeller’s algorithm

Moeller (1993)
Given an ordered finite set of distinct points X := {P1, ...,PS }, find,
for each ideal in Macaulay’s chain Ii := I({P1, ...,Pi}) 1 ≤ i ≤ S, the
escalier N(Ii) and a separator family for the points (with some
more steps you also get the Groebner bases).

→ subsuming FGLM and with the same complexity
→ iterative on points
→ the result (for Lex) is exactly that of Cerlienco-Mureddu
algorithm.

My 2 cents...
If we evaluate each polynomial at each point, with the same
complexity, we can get more information, such as Groebner
representation, separator polynomials and Auzinger-Stetter
matrices.



Another point of view: Moeller’s algorithm

Moeller (1993)
Given an ordered finite set of distinct points X := {P1, ...,PS }, find,
for each ideal in Macaulay’s chain Ii := I({P1, ...,Pi}) 1 ≤ i ≤ S, the
escalier N(Ii) and a separator family for the points (with some
more steps you also get the Groebner bases).

→ subsuming FGLM and with the same complexity
→ iterative on points
→ the result (for Lex) is exactly that of Cerlienco-Mureddu
algorithm.

My 2 cents...
If we evaluate each polynomial at each point, with the same
complexity, we can get more information, such as Groebner
representation, separator polynomials and Auzinger-Stetter
matrices.



Another point of view: Moeller’s algorithm

Moeller (1993)
Given an ordered finite set of distinct points X := {P1, ...,PS }, find,
for each ideal in Macaulay’s chain Ii := I({P1, ...,Pi}) 1 ≤ i ≤ S, the
escalier N(Ii) and a separator family for the points (with some
more steps you also get the Groebner bases).

→ subsuming FGLM and with the same complexity
→ iterative on points
→ the result (for Lex) is exactly that of Cerlienco-Mureddu
algorithm.

My 2 cents...
If we evaluate each polynomial at each point, with the same
complexity, we can get more information, such as Groebner
representation, separator polynomials and Auzinger-Stetter
matrices.



Can we construct a new algorithm, that is

iterative as Cerlienco-Mureddu
and has the

same complexity as the lex game?



Bar Codes (Ceria)

Definition
A Bar Code B is a picture composed by segments, called bars,
superimposed in horizontal rows, which satisfies

a. ∀i, j, 1 ≤ i ≤ n − 1, 1 ≤ j ≤ µ(i), ∃!j ∈ {1, ..., µ(i + 1)} s.t. B(i+1)

j

lies under B(i)
j

b. ∀i1, i2 ∈ {1, ..., n},
∑µ(i1)

j1=1 l1(B(i1)
j1

) =
∑µ(i2)

j2=1 l1(B(i2)
j2

); we will then
say that all the rows have the same length.

0

3

2

1
1 x1 x2 x3



Associating monomials to bars

For t = xγ1
1 · · · x

γn
n ∈ T , ∀i ∈ {1, ..., n}, πi(t) := xγi

i · · · x
γn
n ;

M = {t1, ..., tm} ⊂ T , M[i] := πi(M), M, M[i] increasingly ordered
w.r.t. Lex.

M :=


π1(t1) ... π1(tm)
π2(t1) ... π2(tm)
...

...

πn(t1) ... πn(tm)


Bar Code: connecting with a bar the repeated terms

0

3

2

1

1 1 1 x3

1 1 x2 x3

1 x1 x2 x3



Bar Code and point trie

We can see the Bar Code as a point trie by taking as points the
exponents’ lists (→ Macaulay’s trick) for the given terms.

For M = {1, x1, x2, x3} ⊂ k[x1, x2, x3], we have
M = {p1 = (0, 0, 0), p2 = (0, 0, 1), p3 = (0, 1, 0), p4 = (1, 0, 0)}, so
we have

{1, 2, 3, 4}

{1, 2, 3} {4}

{1, 2} {3} {4}

{1} {2} {3} {4}

0 1

0 1 1

0 1 0 0

0

3

2

1
1 x1 x2 x3



Several applications of Bar Code

Bar Codes are useful to study properties of monomial/polynomial
ideals:

• counting (strongly) stable ideals;

• computing Pommaret bases via interpolation;

• computing Janet multiplicative variables
• detect completeness;

• find variables’ orderings which make a set of terms
Janet-complete

• Bar Code, point trie vs. Janet tree



Several applications of Bar Code

Bar Codes are useful to study properties of monomial/polynomial
ideals:

• counting (strongly) stable ideals;

• computing Pommaret bases via interpolation;

• computing Janet multiplicative variables
• detect completeness;

• find variables’ orderings which make a set of terms
Janet-complete

• Bar Code, point trie vs. Janet tree



Several applications of Bar Code

Bar Codes are useful to study properties of monomial/polynomial
ideals:

• counting (strongly) stable ideals;

• computing Pommaret bases via interpolation;

• computing Janet multiplicative variables
• detect completeness;

• find variables’ orderings which make a set of terms
Janet-complete

• Bar Code, point trie vs. Janet tree



Our algorithm

Base step
|X| = N = 1: set N(1) = {1} and construct the point trie
T(P1) = T(X) and the Bar Code B(1) displayed below. The output
is stored in the matrix M.

{1}

{1}

{1}

...

{1}

a11

a21

an−1 1

an 1

1

...

x1

xn

M =

 xn xn−1 ... x1

↓ ↓ ... ↓

1→ 0 0 ... 0





Our algorithm: |X| = N > 1

• update the point trie: forking level s = σ-value; leftmost label
of the rightmost sibling l = σ-antecedent;

• find the s−bar of tl : B(s)
j

Information on tN:

• it lies over B(n)
1 ,B(n−1)

1 , ...,B(s+1)
1 so tN lies over the first

n, ..., s + 1 bars, i.e. a(N)
s+1 = ... = a(N)

n = 0, so xn, ..., xs+1 - tN;

• it should lie over B(s)
j+1: a(N)

s = a(l)
s + 1.



Our algorithm: |X| = N > 1

We test whether B(s)
j+1 lies over B(n)

1 ,B(n−1)
1 , ...,B(s+1)

1 ; two possible
cases

a. NO: we construct a new s-bar of lenght one over
B(n)

1 ,B(n−1)
1 , ...,B(s+1)

1 , on the right of B(s)
j , we label it as B(s)

j+1

and we construct a 1, ..., s − 1 bar of length 1 over B(s)
j+1:

tN = x j+2
s ; store the output in the N-th row of M.

b. YES: we must continue, repeating the procedure



Our algorithm: |X| = N > 1

• restrict the point trie to the points whose corresponding terms
lie over B(s)

j+1. The set containing these points is denoted by S

and is obtained reading B(s)
j+1. More precisely, S = ψ(B(s)

j+1),
where

ψ : B→ T

is the function sending each 1-bar B(1)
l in the term tl over it

and, inductively, for 1 < u ≤ n, ψ(B(u)
h ) =

⋃
B over B(u)

h
ψ(B)

• read PN ’s path, from level s − 1 to level 1, looking for the first
forking level w.r.t. S (σ-value/σ-antecedent as before).

• repeat the test

The procedure is repeated until we get to the 1-bars or if in the
decision step we get case a.



Example

X = {(0, 0, 0, 0), (0, 0, 0, 1), (0, 1, 2, 3), (1, 0, 0, 0), (1, 0, 0, 1)}

{1, 2, 3}

{1, 2, 3}

{1, 2} {3}

{1, 2} {3}

{1} {2} {3}

0

0 1

2

3

0

0 1

x4

x3

x2

x1
1 x2 x4
1 3 2

M =

0 0 0 0
1 0 0 0
0 0 1 0





For P4 = (1, 0, 0, 0), s = 1, l = 1; B the blue bar
{1, 2, 3, 4}

{1, 2, 3} {4}

{1, 2} {3} {4}

{1, 2} {3} {4}

{1} {2} {3} {4}

0

0 1

2

3

1

0

0

0

0

0 1

x4

x3

x2

x1
1 x2 x4
1 3 2

There is no 1-bar on the right of B, lying over B(4)
1 ,B(3)

1 ,B(2)
1 :

x4

x3

x2

x1
1 x1 x2 x4
1 4 3 2



P5 = (1, 0, 0, 1); s = 4 l = 4:

{1, 2, 3, 4, 5}

{1, 2, 3} {4, 5}

{1, 2} {3} {4, 5}

{1, 2} {3} {4, 5}

{1} {2} {3} {4} {5}

0

0 1

2

3

1

0

0

0 1

0

0 1

B = B(4)
1 ; B′ = B(4)

2 , S = {P2}.

x4

x3

x2

x1
1 x1 x2 x4
1 4 3 2



The fork with P2 happens at s = 1 and the σ-antecedent is Pl , for
l = 2, so B = B(1)

4 .

x4

x3

x2

x1
1 x1 x2 x4
1 4 3 2

Since B′ still does not exist, we create it

x4

x3

x2

x1
1 x1 x2 x4 x1x4
1 4 3 2 5

N = {1, x1, x2, x4, x1x4}



Separator polynomials

A family of separators for a finite set X = {P1, ...,PN} of distinct
points is a set Q = {Q1, ....,QN} s.t.
Qi(Pi) = 1 and Qi(Pj) = 0, for each 1 ≤ i, j ≤ N, i , j.

X = {P1, ...,PN}, with Pi := (a1,i , ..., an,i), i = 1, ...,N, we denote by
C = (ci,j) the witness matrix i.e. the (symmetric) matrix s.t., for
i, j = 1, ...,N, ci,j = 0 if i = j and if i , j,
ci,j = min{h : 1 ≤ h ≤ n s.t. ah,i , ah,j}.

Building blocks:

p[ci,j ]

i,j =
xci,j − aci,j ,j

aci,j ,i − aci,j ,j



|X| = 1: Q1 = 1. Q1, ...,QN−1 associated to {P1, ...,PN−1}: PN?
We see now how to get the new separators Q ′1, ...,Q

′
N for X.

• Set Q ′N = 1.

• ∀j = 1, ..., n, we take the node vj,u of N

• for each sibling vj,u′ of vj,u, we pick an element i of its label
and set Q ′N = Q ′Np[j]

N,i
.

• if vj,u is labelled only by N, then, for each sibling vj,u′ , for each
element i in its label we set Q ′i = Qip

[j]
i,N.

Once concluded this procedure, if a separator Qh , 1 ≤ h ≤ N has
not been involved in the above steps, we set Q ′h = Qh , getting a
family of separators {Q ′1, ...,Q

′
N} for X = {P1, ...,PN}.

Complexity of a single iterative round: O(min(N, nr)).



Example
X = {P1 = (1, 0),P2 = (0, 1),P3 = (0, 2)}

{1, 2, 3}

{1}

{1}

{2, 3}

{2} {3}

1

0

0

1 2

In the first step, we set Q ′′1 = 1; then, adding P2 to the trie we set

Q ′2 = p[1]
2,1 = −(x − 1) and we modify also Q ′′1 , setting

Q ′1 = Q ′′1 p[1]
1,2 = x, since, when P3 is still not in the trie, the node

v1,2, has V1,2 = {2}. So, w.r.t. {P1,P2}, we have Q ′1 = x,
Q ′2 = −(x − 1). Finally, we add P3. This

way,Q3 = p[1]
3,1p[2]

3,2 = −(x − 1)(y − 1) and since

V2,3 = {3},Q2 = Q ′2p[2]
2,3 = (x − 1)(y − 2). Finally, we have

Q1 = x; Q2 = (x − 1)(y − 2); Q3 = −(x − 1)(y − 1).



Comparisons?

Q1 = x; Q2 = (x − 1)(y − 2); Q3 = −(x − 1)(y − 1).

From Lex game

Q1 =
1
2

x(y−1)(y−2); Q2 = y(x−1)(y−2); Q3 = −
1
2

(x−1)y(y−1),

Lundqvist

Q1 = x2; Q2 = (x − 1)(y − 2); Q3 = −(x − 1)(y − 1).

Moeller

Q1 = x; Q2 = 2 − 2x − y; Q3 = x + y − 1.



Auzinger-Stetter

I / k[x1, ..., xn] zerodimensional ideal; A := k[x1, ..., xn]/I. ∀f ∈ A ,
Φf : A → A multiplication by f in A and, fixed a basis
B = {[b1], . . . , [bm]} for A , Af = (aij) so that

[bi f ] =
∑

j

aij[bj],∀i.

We call Auzinger-Stetter matrices associated to I, the matrices
Axi , i = 1, ..., n, defined w.r.t. the basis given by the lex escalier of I.

Lundqvist
X = {P1, ...,PN}, I := I(X) / k[x1, ..., xn]; N = {t1, ..., tN} ⊂ k[x1, ..., xn]
s.t. [N] = {[t1], ..., [tN]} is a basis for A := k[x1, ..., xn]/I. Then, for
each f ∈ k[x1, ..., xn] we have

Nf(f ,N) = (t1, ..., tN)(N(X)−1)t(f(P1), ..., f(PN))t,

where Nf(f ,N) is the normal form of f w.r.t. N.



Notation

• Axh :=
(
a(h)

li

)
li
, 1 ≤ h ≤ n, 1 ≤ l, i ≤ N, the Auzinger-Stetter

matrices w.r.t. N(I);

• B := N(I)(X) := (blj)lj, 1 ≤ l, j ≤ N, blj := tl(Pj);

• C := (cji)ji , 1 ≤ j, i ≤ N, the inverse matrix of B, i.e. C := B−1

• D(h) :=
(
d(h)

lj

)
lj
, 1 ≤ h ≤ n, 1 ≤ l, j ≤ N, d(h)

lj := α
(j)
h tl(Pj), the

evaluation of xh tl at the point Pj .



Lundqvist
X = {P1, ...,PN}, I := I(X) / k[x1, ..., xn]; N = {t1, ..., tN} ⊂ k[x1, ..., xn]
s.t. [N] = {[t1], ..., [tN]} is a basis for A := k[x1, ..., xn]/I. Then, for
each f ∈ k[x1, ..., xn] we have

Nf(f ,N) = (t1, ..., tN)(N(X)−1)t(f(P1), ..., f(PN))t,

where Nf(f ,N) is the normal form of f w.r.t. N.

For 1 ≤ l ≤ N, the l-th row of Axh is the normal form of xh tl :

Nf(xh tl ,N(I)) =
N∑

i=1

aliti = (t1, ..., tN)Ct(xhtl(P1), ..., xhtl(PN))t =

(t1, ..., tN)C t (d(h)
l1 , ..., d(h)

lN )t =
∑

i

 N∑
j=1

d(h)
lj cji

 ti .

This trivially implies that Axh = D(h)C = D(h)B−1.



Computing B−1.

Gaussian column-reduction of
(
B
I

)
.

At each step (
B
I

)
→

(
E
F

)
it holds E = BF So E = 1 =⇒ F = B−1.



We border B obtaining B′ :=


b1N

B
...

bN−1N

bN1 · · · bNN−1 bNN

 and

properly border
(

I
C

)
as



b1N

I
...

bN−1N

fN1 · · · fNN−1 bNN

0

C
...

0
0 · · · 0 1


where

(fN1 · · · fNN−1) = (bN1 · · · bNN−1) C



For each point i we know the last σ-value s(i) and σ-antecedent
Pl(i) ti = xs(i)tl(i)
We perform the following computations

• b1N := 1

• for i = 2 · · ·N − 1, biN := bl(i)Nas(i)N

• for j = 1 · · ·N, bNj := bl(N)jas(N)N
border B

• for i = 1 · · ·N − 1, 1 ≤ h ≤ n, d(h)
iN := d(h)

l(i)Nas(i)N

• for j = 1 · · ·N, 1 ≤ h ≤ n, d(h)
Nj := d(h)

l(N)jas(N)N

border D

• for i = 1 · · ·N − 1, fNi :=
∑

j bNjcji

border C



For each point i we know the last σ-value s(i) and σ-antecedent
Pl(i) ti = xs(i)tl(i)
We perform the following computations

• b1N := 1

• for i = 2 · · ·N − 1, biN := bl(i)Nas(i)N

• for j = 1 · · ·N, bNj := bl(N)jas(N)N
border B

• for i = 1 · · ·N − 1, 1 ≤ h ≤ n, d(h)
iN := d(h)

l(i)Nas(i)N

• for j = 1 · · ·N, 1 ≤ h ≤ n, d(h)
Nj := d(h)

l(N)jas(N)N

border D

• for i = 1 · · ·N − 1, fNi :=
∑

j bNjcji

border C



For each point i we know the last σ-value s(i) and σ-antecedent
Pl(i) ti = xs(i)tl(i)
We perform the following computations

• b1N := 1

• for i = 2 · · ·N − 1, biN := bl(i)Nas(i)N

• for j = 1 · · ·N, bNj := bl(N)jas(N)N
border B

• for i = 1 · · ·N − 1, 1 ≤ h ≤ n, d(h)
iN := d(h)

l(i)Nas(i)N

• for j = 1 · · ·N, 1 ≤ h ≤ n, d(h)
Nj := d(h)

l(N)jas(N)N

border D

• for i = 1 · · ·N − 1, fNi :=
∑

j bNjcji

border C



• for i = 1 · · ·N − 1, giN :=
∑

j cijbjN

• hNN := fNN −
∑

j fNjbjN

• ciN := giN
hNN

, 1 ≤ i ≤ N

• cij := c′ij − fNjciN1 ≤ i ≤ N, 1 ≤ j < N
computing C = B−1

• for 1 ≤ l < N, 1 ≤ h ≤ n, a(h)
lN :=

∑
i d(h)

li ciN,

• for 1 ≤ j < N, 1 ≤ h ≤ n, a(h)
Nj :=

∑
i d(h)

Ni cij ,

A (h) = CD(h)



• for i = 1 · · ·N − 1, giN :=
∑

j cijbjN

• hNN := fNN −
∑

j fNjbjN

• ciN := giN
hNN

, 1 ≤ i ≤ N

• cij := c′ij − fNjciN1 ≤ i ≤ N, 1 ≤ j < N
computing C = B−1

• for 1 ≤ l < N, 1 ≤ h ≤ n, a(h)
lN :=

∑
i d(h)

li ciN,

• for 1 ≤ j < N, 1 ≤ h ≤ n, a(h)
Nj :=

∑
i d(h)

Ni cij ,

A (h) = CD(h)



Example
For X = {P1 = (1, 0),P2 = (0, 1),P3 = (0, 2)}:

P1: B = C = 1 and D(1) = (1) = Ax , D(2) = (0) = Ay .

P2: B′′ =

(
1 1
1 0

)
,
(

I′′

C ′′

)
=


1 1
1 0
1 0
0 1

→ B =

(
1 1
1 0

)
, C = B−1 =

(
0 1
1 − 1

)

D(1) =

(
1 0
1 0

)
, Ax =

(
0 1
0 1

)
, D(2) =

(
0 1
0 0

)
, Ay =

(
1 − 1
0 0

)
.

P3: B ′′ =

1 1 1
1 0 0
0 1 2

, C ′′ =

0 1 0
1 − 1 0
0 0 1

, I′′ =

1 0 1
0 1 0
1 − 1 2

→
C = B−1 =

 0 1 0
2 − 2 − 1
−1 1 1

. D(1) =

1 0 0
1 0 0
0 0 0

, Ax =

0 1 0
0 1 0
0 0 0

,
D(2) =

0 1 2
0 0 0
0 1 4

, Ay =

 0 0 1
0 0 0
2 − 2 3

.



Thank you for your attention!


