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ONCE UPON A TIME...

CERLIENCO-MUREDDU (1990)

Given a finite set of distinct points X, compute the lexicographical
Groebner escalier N(I(X)) of the ideal of the points I(X).

There is a 1 — 1 correspondence between X and N(I(X)).

The algorithm providing the correspondence is iterative on the
points and inductive on the variables.
Complexity: n°S? (n =number of variables, S = [X|).



AN IMPROVEMENT: THE LEX GAME

FeLszeGHY-RATH-RONYAT (2006)

By a clever use of tries (point trie - lex trie), they develop an
algorithm that computes the lexicographical escalier in a more
efficient way.

The algorithm drops iterativity for the sake of efficiency.
Complexity: nS + Smin(S, nr)
(r = maximal number of children of a node).



THE POINT TRIE

It is a trie representing the reciprocal relations among the
coordinates of points.

same path from level O to level i = same 1, ..., i first coordinates

It is constructed iteratively on the points.
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EXAMPLE OF POINT TRIE
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(1.3) 2)
of N 1]
1 B @
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EXAMPLE OF POINT TRIE

X ={(1,0,0),(0,1,0),(1,1,2),(1,0,3)}

1,2,3,4}
SN
{1,3,4} {2}
TEN Y
{1,4} {3} {2}
03| o 0]
{1t {4y {38} {2}



ANOTHER POINT OF VIEW: MOELLER’S ALGORITHM

MOELLER (1993)
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algorithm.

My 2 CENTS...

If we evaluate each polynomial at each point, with the same
complexity, we can get more information, such as Groebner
representation, separator polynomials and Auzinger-Stetter
matrices.



Can we construct a new algorithm, that is

iterative as Cerlienco-Mureddu
and has the
same complexity as the lex game?



BAr CobEs ( )

DEFINITION
A Bar Code B is a picture composed by segments, called bars,
superimposed in horizontal rows, which satisfies

A Vi, 1<i<sn—1,1<j<pu(i), e, ﬂ(i+1)}s.t.Bj£i+1)

lies under B()
B. Yis, b € {1,...,n}, Z“(" l1(B (")) Z“ h(B; )) we will then
say that all the rows have the same Iength

o 1 Xq Xo X3




ASSOCIATING MONOMIALS TO BARS

Fort=x]"---x)" e T, Vie{l,..n},al(t):=x"-x;

M={ty,...tm} c T, Ml .= n’(M), M, M increasingly ordered
w.r.t. Lex.

' (t) 7' (tm)

() o 7(tm)

Bar Code: connecting with a bar the repeated terms

o 1 Xq Xo X3

1 1 X X
1 1 1 X




BaRr CODE AND POINT TRIE

We can see the Bar Code as a point trie by taking as points the
exponents’ lists (— Macaulay’s trick) for the given terms.
For M = {1, x1, X2, X3} C K[X1, X2, X3], we have

M = {p1 = (0,0,0),p2 = (0,0,1),p3 = (0,1,0), ps = (1,0,0)}, so
we have

{1,2,3,4}
0/ 1~ o 1 Xq X2 X3
{1,293} {4} 1
0 1~ 11
{1.2} {3} {4} ’
011\ 0! 0! 3
{1} {2} {3} {4}
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SEVERAL APPLICATIONS OF BAR CODE

Bar Codes are useful to study properties of monomial/polynomial
ideals:

e counting (strongly) stable ideals;
e computing Pommaret bases via interpolation;

computing Janet multiplicative variables

detect completeness;

find variables’ orderings which make a set of terms
Janet-complete

Bar Code, point trie vs. Janet tree



OUR ALGORITHM

BASE STEP

IX| = N =1:set N(1) = {1} and construct the point trie

T(P1) = T(X) and the Bar Code B(1) displayed below. The output
is stored in the matrix M.

{1}

611{%} ’

asq | X1

(1) Xn Xn-1 X1
an-11 : M = l l l
: i 1> 0 0 0

an1

{1}



Our ALGORITHM: |X| = N > 1

e update the point trie: forking level s = o-value; leftmost label
of the rightmost sibling | = o-antecedent;

e find the s—bar of t: Bj(s)

Information on f:

e it lies over Bﬁ"), BS’H), ...BB" 50ty lies over the first

n,..,s+1bars,ie. aé’ﬁ = .= af,N) =0, S0 Xp, ..., Xs+1 1 In;

©): o) _ 40 4 1.

—_

e it should lie over BjJr



Our ALGORITHM: |X| = N > 1

We test whether B}ﬂ lies over Bgn),BS”_”,..., ]

cases

B two possible

A. NO: we construct a new s-bar of lenght one over

BS"),BS”_”,. (S+1) , on the right of B() (s)

we label it as Bj+1
and we constructa 1, ...,s — 1 bar of Iength 1 over B}ﬂ:
ty = xL2; store the output in the N-th row of M.

B. YES: we must continue, repeating the procedure



Our ALGORITHM: |X| = N > 1

e restrict the point trie to the points whose corresponding terms
lie over B}ﬂ. The set containing these points is denoted by S
(s) B(S)

and is obtained reading B e )s

s .
/11~ More precisely, S = y(

where

Yy:B—->T

is the function sending each 1-bar B,“)

and, inductively, for 1 < u < n, ;b(B;,”)) = Ug gerg® ¥(B)
h

in the term t; over it

e read Py’s path, from level s — 1 to level 1, looking for the first
forking level w.r.t. S (o-value/o-antecedent as before).

o repeat the test

The procedure is repeated until we get to the 1-bars or if in the
decision step we get case a.



ExXAMPLE

X ={(0,0,0,0),(0,0,0,1),(0,1,2,3),(1,0,0,0),(1,0,0,1)}

{1,2,3)
0|
{1,2,3} 1 3 2
of I\ o 22 0000
{172} {3} X2 — — M=1[1 0 0
of A s — 0010
{1,2} {3p —
ZEERAN 3



For P, =(1,0,0,0), s =1,/ = 1; B the blue bar

{1,2,3,4}
o N
{1,2,3} {4} 1 3 2
of N o L
{1.2} {3} {4} x2 -
0 2‘ O‘ P —
{1.2} {3} {4} M —
o N N 0N
{1} 2 {38} {4

There is no 1-bar on the right of B, lying over Bg4), 853), BSZ):

1 4 3 2
1 X4 X2 X4

PO — _
X0 —
—

X4 — —



4:
| =
4
0,1);s

0,

_(1’
Ps =

5} |
2,3, 4,\ {j’ 5
{1, 5}
{4’
2 .
; ,1\ | {4,
:,2} 2{
{0 }{3)
2
{1,

| 1\{5}
0
{4}
?\{3}
1\{2}
o
).
{1} "
8@ 5 _
2
)- B/ —
Bl*);
B =

2
4
: X,
X2
4
X1
1
1

xq

X2
L

X ee—



The fork with P> happens at s = 1 and the o-antecedent is P}, for
I=2,50B=B{".

Since B’ still does not exist, we create it

1 4 3 2 5
1 X4 X2 X4 X1Xa

X1

xX—

X3

X4

N = {1,X1, X2, X4, X1X4}



SEPARATOR POLYNOMIALS

A family of separators for a finite set X = {P4, ..., Py} of distinct
points is a set Q = {Qq, ...., Qn} S.1.
Qi(P;j) =1and Qi(P;) =0, foreach 1 <i,j < N, i#j.

X ={P1,..., Pn}, with P; := (a1, ..., an,), i = 1, ..., N, we denote by
C = (cij) the witness matrix i.e. the (symmetric) matrix s.t., for
Lj=1,.,N,cij=0ifi=jandif i # j,

Cij = minth: 1 <h<ns.t ap; # ah,,-}.

Building blocks:

Ac;ji — Aeijf



X|=1: Q =1. Q4, ..., Qn_1 associated to {P41, ..., Pn_1}: Pn?
We see now how to get the new separators Q7 ..., Qy, for X.

Set Q = 1.
¥Yj=1,...,n, we take the node v;, of N
for each sibling v; of vj,, we pick an element i of its label
' Ay ol
and set Q) = QNpNj.
if v; 4 is labelled only by N, then, for each sibling v; , for each

1

element i in its label we set Q) = Qip; -

Once concluded this procedure, if a separator Qn, 1 < h < N has
not been involved in the above steps, we set Q] = Qp, getting a
family of separators {Qy, ..., Q\} for X = {Px, ..., Pn}.

Complexity of a single iterative round: O(min(N, nr)).



ExAmMPLE
X={P;=(1,0),P> = (0,1),P3 = (0,2)}

In the first step, we set Q" = 1; then, adding P> to the trie we set
Q= pgl = —(x — 1) and we modify also Qy’, setting

Q= Q{’pm = X, since, when Pj is still not in the trie, the node
vi2, has V2 = {2}. So, w.r.t. {Py, P2}, we have Qf = x,

Q; = —(x —1). Finally, we add Ps. This

way,Qs = pmpﬂ = —(x—-1)(y — 1) and since

Vas = (3),Q2 = Q4p) = (x — 1)(y - 2). Finally, we have

Q=x Q=(x-1)(y-2) QG=-(x-1)(y-1)



COMPARISONS?

Q=xQ=Kx-1){¥-2) G=-(x-1)(¥-1).

From Lex game

Q :1x(y N(y-2); Qe = y(x-1)(y-2); Qs = ;(X Dy(y-1),
Lundqvist

Qr=x% Q= (x-1)(y-2); s =~(x=1)(y - 1).
Moeller

Q=x,Q@=2-2x-y, Q3 =x+y—-1.



AUZINGER-STETTER

| <K[x1, ..., Xn] zerodimensional ideal; A := K[x, ..., Xa]/I. Vf € A,
®f: A — A multiplication by f in A and, fixed a basis
B = {[b4],....[bm]} for A, A; = (a;) so that

[bif] = > aylb], Vi.
j
We call Auzinger-Stetter matrices associated to /, the matrices

Ay, I =1,...,n, defined w.r.t. the basis given by the lex escalier of I.

LunpQvisT

X = {P1, ceey PN}, | = I(X) < k[X1, ceey Xn]; N = {t1, ...,tN} - k[X1, ceey Xn]
s.t. [N] = {[t1], ..., [tn]} is a basis for A := k[x1, ..., Xn]/I. Then, for
each f € K[xy, ..., Xxs] we have

NE(f,N) = (t1, ..., tn) (NOX) NP1 ), oo, (PR

where Nf(f,N) is the normal form of f w.r.t. N.



NOTATION

Ay, = (a,(’.h)) ,1<h<n,1<1i<N,the Auzinger-Stetter
li

matrices w.r.t. N(1);

B := N(I)(X) := (by);, 1 < Lj < N, by := t(P));

C := (cj);, 1 <j,i < N, the inverse matrix of B, i.e. C := B~

D) — (d,(jh))lj,1 <h<nt<lj<N d" = aP4(P), the
evaluation of xxt; at the point P;.



LunpovisT

X ={Pq,.... Pn}, [ := I(X) <K[X1, ..., Xp]; N = {t1, ..., tn} C K[X1, ..., Xp]
s.t. [N] = {[t1], ..., [tn]} is @ basis for A := k[x1, ..., Xp]/I. Then, for
each f € K[xq, ..., Xx5] we have

NE(f,N) = (t1, ... thn) (N(X) ") (F(P1), ..., f(Pn))',

where Nf(f,N) is the normal form of f w.r.t. N.

For 1 <1< N, the I-th row of A, is the normal form of xx1:

Xht/, Z ajit = t1, | )Ct(Xht|(P1), ...,Xht|(|:’N))t =

N
h h h
(t1,....tn)C (d,(1 ), d,(N))t = Z [Z d,E. )Cji] ti.
i =t

This trivially implies that A,, = D" C = DN B~



Compuring B,

|

)= {#)

itholds E=BFSoE=1 — F=B"".

Gaussian column-reduction of (E)
At each step



bin

We border B obtaining B" := B : and
bn-1n
byt o+ bnn-1 ban
bin
| )
bn-1n
properly border‘(%)as oo fwe ng where
C :
0
0 ---0 1

(fN1 s fNN—1) = (bN1 o ‘bNN—1) C



For each point i we know the last o-value s(i) and o-antecedent
Pyiy [ ti = Xs(iy (i)
We perform the following computations
o b1N =1
o fori=2---N-1,bin := biynas(iyn
o forj=1---N,bnj := bynyas(nyn
border B



For each point i we know the last o-value s(i) and o-antecedent
Pyiy [ ti = Xs(iy (i)
We perform the following computations

o b1N =1

o fori=2---N-1,bin := biynas(iyn

forj=1--- N, bnj := bynyiasnn
border B

fori=1---N-1,1<h<n, di(l\,;) = dl((rl']))Nas(i)N

forj=1---N,1<h<n, d,(vf;) = d/((,z)jaS(N)N

border D



For each point i we know the last o-value s(i) and o-antecedent
Pyiy [ ti = Xs(iy (i)
We perform the following computations

o b1N =1

o fori=2---N-1,bin := biynas(iyn

o forj=1---N, bn; := bynyjas(nn
border B
efori=1---N-1,1<h< n’di(l\f;) = dl((rl']))Nas(i)N
« forj=1--N.1<h<ndy = dif) amn
border D
e fori=1---N-1,1fi:= 3, bniCji

border C



fori=1---N—-1,giny := ZjCijij

hnn = fun — 2 fnjbjn

CiNn = %,1 <i<N

Cj 1= c;j—fNjciN1 <i<N1<j<N
computing C = B~



fori=1---N—-1,giny := ZjC,'jij

hnn = fun — 2 fnjbjn
C,'NZ:%J <i<N

CijZ:C{j—fNjC,'N1 <i<N,1<j<N

computing C = B~
for1 <lI<N,1<h<n, a

for1 <j<N,1<h<n, a
A — cph

Z/ II CIN7

Z: C,]



ExAMPLE
For X = {P; = (1,0), P = (0,1), Ps = (0,2)}:
Py: B=C=1and D = (1) = A,, D® = (0) = A,.

11
o (1N (I") |10 (11 o1 (01
Pe: B _(10)’(7)_ 10 _’B_(m)’C_B _(1—1)
10 01 01 1-1
p(1) — (2 — =
~(10) (01)0 (00} 4 =(070)
111 010 101
Ps: B”=[100[,c”=|1-10|,"=|010|—>
012 00 1 1-12
010 100 010
=B'=|2-2-1|. DM =(100[,A,=|010],
11 1 000 000

012 00 1
D@ =[000|,A,=|00 0|
014 2-23



Thank you for your attention!



